

Application
在管中加入樣本 ↓ 在管中加入beads ↓ 在管中加入Lyse buffer (可省)
蓋好管蓋,放到adapter上
將adapter set裝到TissueLyser上,
◆ 合上防護罩,按要求設定參數 ↓
篇始碾磨

Application
植物組織:
葉子
根莖
種子
動物組織:可能需要使用液氮
肌肉
內臟
牙齒
骨
酵母,細菌:需要使用玻璃珠
- Sample to Insight

CON		
TissueLyser 2	TissueLyser LI	Г
1-192 samples	1-12 samples	
Keep cool , when dist (Let sample be good	rupt Keep cool , when di d) (Let sample be go	lisrupt pod)
Operation easily, only samples and loc	put Operation easily, on ck samples and l	ıly put lock
Operation time shor	ter Operation time sho	orter
Cheaper consumabl (Below 20 NTD)	es Cheaper consuma (Below 20 NTT	ubles D)

產品		貨號
TissueLyser (220-240 V, 50/60 Hz)	Universal laboratory mixer-mill disruptor, 220-240 V, 50/60 Hz	85220
TissueLyser Adapter Set 2 x 24	2 sets of Adapter Plates and 2 racks for use with 2.0 ml microcentrifuge tubes on the TissueLyser	69982
TissueLyser Adapter Set 2 x 96	2 sets of Adapter Plates for use with Collection Microtubes (racked) on the TissueLyser	69984
Stainless Steel Beads, 5 mm (200)	Stainless Steel Beads, suitable for use with the TissueLyser system	69989
Tungsten Carbide Beads, 3 mm (200)	Tungsten Carbide Beads, suitable for use with the TissueLyser system	69997
Grinding Jar Set, S. Steel (2x10ml)	2 Grinding Jars(10 ml), 2 Stainless steel Grinding balls(20 mm)	69985
Grinding Jar Set, Teflon(2x10ml)	2 Grinding Jars(10 ml), 2 Teflon Grinding balls(20 mm)	69986

But have you ever thought about					
how much it costs*?					
Sample to Insight	Material 0.5-10 µl Disposable Tips 1-200 µl Disposable Tips Adhesive acryl tape Weighing boats Gloves Tris Na2EDTA - 2H2O Agarose Acetic Acid 100 bp Ladder EBF Sample No. SUB TOTAL Labor Cost TOTAL/No. Of Samples TOTAL/Sample Materials Agarose or h Reagents Agarose weig Repeat experimer Labor time Disposal of waste	Amount Unit 1 pc 1 pc 1 pc 2 pc 1.21 g 0.28 ml 0.25 min 25 min gh-resolution agaro ter paper thing boats, tape ts due to manual e (liquid and solid)	Package Price 39.66 34.02 6.96 7.44 18.96 7.84 135 188.52 29.64 52.8 37.32 12 20	Prices/ Unit 960 960 100 1000 1000 1000 1000 50 10 1000 50 10	Net Price 0.54 0.04 0.02 0.07 0.38 0.01 0.236 0.02 3.81 8.33 12.15 1.01

Have you ever thought about			
how much time you spend on agarose	e gel electrophoresis?		
	Process Steps	Time	e
· · · · · ·	Gel Preparation	15-30	min
and the second sec	Sample Loading	5	min
	DNA/RNA Separation	30-120	min
	Analysis	10	min
	TOTAL	60-165	min
- Sample to Insight	 Three gels a week: 150 - 430 hours/year Two gels a day: 520 - 1430 hours/year 		

	GEN	Ha	ave y	ou e	ever	thouş	ght abou	at
- QIA	GEN	Ha	ave y		ever	thouş	ght abou	at standardization ? Accuracy of results Base-pair resolution that can be achieved Manual errors Automated documentation and analysis
— Sam	ple to li	nsight						

Streamline Yo	ur Workflow!		
	Post-PCR A	nalysis	
Sample Preparation	Sample Purification	Assay Setup & PCR	Detection & Analysis
Tissue disruption products	Manual and automated sample purification products	PCR products	QIAxcel System & Gel Cartridges
	Post-Purification Qua	lity Control	
			SOS
Preparation/Stabilization	Sample Purification	Analyte Quality Conformation	Real-Time PCR MicroArray
Tissue disruption products	Manual and automated sample	QIAxcel System	PCR & QuantiTect Products

No More Slab-Gel	Analysis
GRADEN	Key features of the QIAxcel Advanced System
	 Fully automated DNA and RNA analysis
	Ready-to-run gel cartridges
	Fast processing: 12 samples in 3-20 min
	Up to 96 samples per run
M	Sample input amounts <0.1µl
4511	■ Detection limit of 0.1 ng/µl
	■ High resolution of 3-5 bp
	Digital data output
1	
- Sample to Insight -	

				Best resolution			Run	Example
Gel cartridge name	Analyte	Size range	100 bp - 500 bp	500 bp - 1 kb	1 kb - 5 kb	5 kb - 10 kb	time*	applications
DNA High Resolution 100 runs/1200 samples	DNA	15 bp - 10 kb	3-5 bp	50 bp	500 bp	1-1.5kb	7-20 min	High-resolution genotyping Large and long size range
DNA Screening 200 runs/2400 samples	DNA	15 bp -5 kb	20-50 bp	50- 100 bp	200- 500 bp	-	5 min	Fast PCR screening (single and multiplex)
DNA Fast Analysis 250 runs/3000 samples	DNA	15 bp -3 kb	50 bp	50 bp	250 bp - 1kb†	-	3-5 min	Fast single amplicon analysis
RNA Quality Control 100 runs/1200 samples	RNA	200 bp -10 kb	200 bp	-	-	-	10 min	Checking RNA quality

Marker combinations	NA Size IV	larker and QX Alignment	
Size marker	Cat. no.	Alignment marker	Cat. no.
QX DNA Size Marker pUC18/HaeIII (50 µl)	929550	QX Alignment Marker 15 bp/1 kb (1.5 ml)	929521
QX DNA Size Marker FX174/HaeIII (50 µl)	929551	QX Alignment Marker 15 bp/3 kb (1.5 ml)	929522
QX DNA Size Marker 25 bp – 500 bp (50 µl)	929560	QX Alignment Marker 15 bp/600 bp (1.5 ml)	929530
QX DNA Size Marker 100 bp – 2.5 kb (50 µl)	929559	QX Alignment Marker 15 bp/3 kb (1.5 ml)	929522
QX DNA Size Marker 50–800 bp (50 µl) ∨2.0	929561	QX Alignment Marker 15 bp/1 kb (1.5 ml)	929521
QX DNA Size Marker 250 bp – 4 kb (50 µl) v2.0	929562	QX Alignment Marker 50 bp/5 kb (1.5 ml)	929529
QX DNA Size Marker 250 bp – 8 kb (50 µl) v2.0	929563	QX Alignment Marker 15 bp/10 kb (1.5 ml)	929523

QIAxcel ScreenGel features	Advantages
User management and user roles	 Allows access only to what is needed Supports inexperienced users by simplifying interface Prevents unauthorized access and data manipulation Requires less training
Complete Process Profiles defining entire workflow	 Supports inexperienced users by simplifying interface Saves time by Minimizing time to start an experiment Eliminating manual analysis needs Easy-to-use Requires less training
Process wizard guided start of experiment	Supports inexperienced users by guided data entryIntuitive usageHigher level of safety
Drag-and-drop and many mouse-based operations	- Intuitive usage - Ease-of-use
Report/Export functionality	- Time savings for customized data documentation
Support features to comply with 21 CFR part 11	- Time savings for data documentation - Supports electronic data documentation

A Novel Multiplex Tetra-Primer ARMS-PCR for the Simultaneous Genotyping of Six Single Nucleotide Polymorphisms Associated with Female Cancers Chen Zhang ^{1,2} , Ying Liu ^{1,2} , Brian Z. Ring ³ , Kai Nie ¹ , Mengjie Yang ¹ , Miao Wang ¹ , Hongwei Shen ¹ , Xiyang Wu ^{2,2} , Xuejun Ma ^{1,4}	Key factors influencing multiplex PCR: • Buffer • Enzyme • Primers
 Reported a novel multiplex T-ARMS-PCR method for genotyping six SNPs in a single reaction. QIAGEN multiplex PCR kit was used for multiplex PCR amplification 	• Template
 <u>QIAxcel advanced</u> was used for separating and detecting the multiplex PCR products 	QIAGEN multiplex PCR kit ✓ No optimization required
• Of the 186 samples, up to 11 amplicons can be produced in one single PCR and separated by capillary electrophoresis.	✓ Ensure high specificity and sensitivity with a built-in hot start
The multiplex T-ARMS-PCR genotyping results were consistent with sequencing results	✓ Cost-effective

		Nanodrop	Gels	Qubit	µFluidic s/CE	
A260/280	Yield, protein contaminants	V		(V)		
A260/230	Salts & other contaminants*	V				There is no one-for-all solution !
Quantification	Yield	V	(V)	V	V	
Degradation	Sample integrity		V		V	
Size range			V		V	
Sele	ection criteria:					
	Costs/analysis					
	Speed					
	Hands-on time					
	Sensitivity					
	Sample consum	ption				

Analysis Report Peak Calling Properties	What it is:
Peak Calling Instruction Default RNA QC Save as	RNA Integrity Score – "RIS"
Peaks of Interest Include size marker samples Find centered peak in interval Find highest peak in interval	Classifying <u>eukaryotic RNA (only</u>) data with a single value between 1 to 10
Name Position Tol. [%] 18 S 1869 nt 15,00 28 S 5025 nt 15,00 Add Delete	 Newly designed by QIAGEN
Name Position Tolerance Size V %	 Developed with a large set of RNA samples with different stages of degradation
Calculated Columns Calculated Columns Total Concentration ("Total Conc.") DNA Interful Score ("DIS")	■ Unknown data from eukaryote species can be matched with these algorithm → RIS
Ref. Peak 18 S V Ref. Peak 18 S V Ratio Normalized Area ("Ratio") 28 S V	
18 S V Relative Abundance	

		Con	nparable results	to Agilent Bioanalyzer 2100
QIAxce	<u>1</u> <u>A3</u> <u>M4</u> <u>A5</u> <u>A6</u>	A7 A8 A9	<u>A10 A11 A22</u> [H]	Agilent Bioanalyzer 2100
3000 - 500 - 500 - 35 -				
Lane	Name	RIS	RIN	18 - L 1 2 3 4 5 6 7 8 9 20 11
A1	Jurkat_1	10.0	9.9	10
10	Jurkat_1	10.0	9.9	$R^2 = 92.92\%$
AZ	Jurkat_2	9.1	9.2	
A2 A3		9.1	9.2	8
A3 A4	Jurkat_2			Z
A2 A3 A4 A5	Jurkat_2 Jurkat_3	8.6	8.2	H
A2 A3 A4 A5 A6	Jurkat_2 Jurkat_3 Jurkat_3	8.6	8.2	KI
A2 A3 A4 A5 A6 A7	Jurkat_2 Jurkat_3 Jurkat_3 Jurkat_4	8.6 8.9 6.6	8.2 8.2 6.5	
A2 A3 A4 A5 A6 A7 A8	Jurkat_2 Jurkat_3 Jurkat_3 Jurkat_4 Jurkat_4	8.6 8.9 6.6 6.7	8.2 8.2 6.5 6.5	
A2 A3 A4 A5 A6 A7 A8 A9	Jurkat_2 Jurkat_3 Jurkat_3 Jurkat_4 Jurkat_4 Jurkat_5	8.6 8.9 6.6 6.7 5.5	8.2 8.2 6.5 6.5 5.1	
A2 A3 A4 A5 A6 A7 A8 A9 A6	Jurkat_2 Jurkat_3 Jurkat_3 Jurkat_4 Jurkat_4 Jurkat_5 Jurkat_3	8.6 8.9 6.6 6.7 5.5 5.6	8.2 8.2 6.5 6.5 5.1 5.1	

